Mystical Winds Encyclopedia

ZZT-OOP Documents

Command Reference

Become Element:

Usage: #BECOME <template>

The object turns into the given element, optionally with the given color. Its code is deleted, and it may no longer perform its pre-stated functions, even if changed back into an object.

If the object becomes an element with stats, its parameters are set to zero and its cycle interval is set to the default for the specific new element.

Related Topics: Templates, Elements
Bind Object:

Usage: #BIND <objectname>

The object sets its Length value to 65536 minus the appearance number of the first stat element in the board’s data with the specified object name. It begins to use that object’s code for the commands it executes. It doesn’t copy it, but rather uses the exact same place in the data to read its functions to perform.

Commands that alter the code (ZAP or RESTORE) for one object also affect the object that bound to it.

A major advantage of using the BIND command is it takes up less board space than having a copy of the code for the other object. If you begin to near 17K for one board or 250K for one world, try to use the BIND command if you can.

Change Element:

Usage: #CHANGE <template> <template>

Every instance of the first specified element, optionally with the first specified color, on the active board is changed into the second specified element, optionally with the second specified color. If the color is not specified, the result color will be the color of the preexisting element.

If any of the new elements default with stats, the parameters are all set to zero and their cycle intervals are set to their defaults.

Related Topics: Templates, Elements
Character:

Usage: #CHAR <integer>

The object’s first parameter (the display character parameter) is set to the given number, thus changing what the object looks like. The number must be a single byte length (between 0 and 255).

Clear Flag:

Usage: #CLEAR <flagname>

The first active flag with the given flag name is removed from the data, thus making it no longer active and adding space for another flag to be set in its place.

Cycle Interval:

Usage: #CYCLE <integer>

The object’s cycle interval is set to the given number. The number must be a single byte length (between 0 and 255), and the object won’t accept 0. The higher the number is, the slower the object executes its commands.

Die:

Usage: #DIE

The object clears its code from the data and turns itself into an empty.

End:

Usage: #END

The object sets its Current Instruction value to –1. By doing this, the object stops executing any further commands. Besides continuing the WALK function, it won’t do anything until something else causes it to react by sending it to a label.

End Game:

Usage: #ENDGAME

The health is set to zero. The player then reacts to this by speeding up to game to maximum speed (speed 8), displaying the “game over” message, and rejecting the arrow key and spacebar functions.

Give Status:

Usage: #GIVE <status> <number>

The specified status value is incremented by the given number. The number must be between 0 and 32767.

Related Topics: Status Counters
Go Direction:

Usage: #GO <direction>

The object moves one space in the given direction. If it is blocked, it simply waits until it can move and then does so. No further commands will be executed until either it completes the move (the cycle after the move is completed) or an outside element sends it to a label.

Related Topics: Directions
Idle:

Usage: #IDLE

The object stops executing any further commands until its current cycle is finished. It basically ends the current cycle.

The IDLE command is equivalent in function to #GO IDLE and /I[DLE].

If Condition:

Usage: #IF <condition> {<operator>|<command>}

The object tests if the given condition is true, in which case it executes the given command/operator (it treats it as if the “#” symbol is given). If the condition is not true, it simply ignores to rest of the line and continues with the next line.

Related Topics: Conditions, Operators
Lock:

Usage: #LOCK

The object sets its second parameter to 1. By doing this, the object isolates itself from outside influence by rejecting any attempts to send itself to a label. Until the UNLOCK command is used, nothing beside itself can cause the object to jump to another label. The object itself may send itself to labels normally.

Play Music:

Usage: #PLAY <string>

The given string of music is played on the PC Speaker. If notes are already playing, it will tag the given string to end of the currently playing one. The object continues through the code immediately without waiting for the music to play through. If the string of music in memory is maxed out, the rest of the string will be discarded and left unplayed.

Related Topics: Music Parameters
Put Element:

Usage: #PUT <direction> <template>

The specified element, optionally with the specified color, is placed to the given direction of the object. It will overwrite any preexisting element in that direction, with the exception of the player. If the color is not specified, the result color will be the color of the preexisting element.

There is a bug that disables an object from putting something in the bottom row of a board. This may simply be an error in ZZT regarding the bounds checking for the edge of boards (the y coordinate may just be off by one). So objects won’t be able to use this command for putting anything in the bottom row or off the edge of the board anywhere else.

Related Topics: Directions, Templates, Elements
Restore Location:

Usage: #RESTORE <location>

Every instance of ’<label> in the object in the first part of the given location is changed into :<label>. This causes labels that have been ZAPed to become active again.

Related Topics: Locations
Send Location:

Usage: #[SEND] <location>

An object is sent to the given location, so its code will begin running from there. Locations may include the object’s name or reference, and the name of the label.

Note that the word SEND is optional, meaning that you may completely omit the word SEND.

Related Topics: Locations
Set Flag:

Usage: #SET <flagname>

The first empty flag space is set with the given flag name. That flag name is then active for IF commands. The flag may be removed using the CLEAR command.

Note that a single flag name may be set more than once, taking up more than one flag space. If there are more than one flag of a single flag name set, IF commands still treat it as one flag, so it is always recommended to make sure only one is set at any time to save space for more.

Shoot:

Usage: #SHOOT <direction>

The object places a white-on-black enemy bullet moving in the given direction to the given direction if it isn’t blocked.

Related Topics: Directions
Take Status:

Usage: #TAKE <status> <number> [{<operator>|<command>}]

The specified status value is decremented by given number. If the given number is smaller than the specified status value, the optional command/operator given (it treats it an if the “#” symbol is given) is executed and the value remains what it was. The given number must be between 0 and 32767.

Related Topics: Status Counters, Operators
Then:

Usage: #THEN {<operator>|<command>}

The given command or operator is executed normally. The THEN command was originally made as an optional tag to the IF command, but it isn’t at all necessary.

Related Topics: Operators
Throw Star:

Usage: #THROWSTAR <direction>

The object places an enemy star with a life of 100 cycles moving in the given direction to the given direction.

Related Topics: Directions
Try Direction:

Usage: #TRY <direction> [{<operator>|<command>}]

Similarly to the GO command, the object attempts to move in the given direction. However, if it cannot move it will simply continue executing its code. If a command/operator is given, it will execute the given command/operator (it treats it an if the “#” operator is given) if it is unable to move in the given direction.

Related Topics: Directions, Operators
Unlock:

Usage: #UNLOCK

The object sets its second parameter to 0. By doing this, the object begins allowing outside elements to send itself to labels within its code. This is used to undo what the LOCK command does.

Walk Direction:

Usage: #WALK <direction>

The object sets its X and Y Step values based on the given direction. This causes the object to persistently move in the given direction regardless of the commands it is executing. Unlike the GO command, the WALK command initiates relentless movement until another WALK command alters the X and Y Step values once again. When it is blocked in the walking direction, it temporarily ceases its movement but continues executing its code. It begins moving again when it is no longer blocked.

Because the WALK command alters the cyclical movement and the GO command forces an immediate movement, the two may both affect the object’s coordinates in one single cycle. This allows double speed movement and diagonal movement.

Related Topics: Directions
Zap Location:

Usage: #ZAP <location>

The first instance of the given label in the specified object’s code is changed into a zap label (the “ : ” is changed into a “ ’ ”), thus resulting in a non-function label marker. If the object whose label was zapped is sent to a label with the same name, it will either go to the next label in its code with the same name if one exists or, if none do, it will simply ignore the send attempt.

The ZAP command can be undone using the RESTORE command. Note that the RESTORE command undoes every ZAP command done every label with the same name in the same object’s code.

Related Topics: Locations
